想咨询一下关于数学专业的数学学得好应该是怎样的评断标准?的问题,大家能帮助我解答一下吗
数学专业学得好不好,一般指高等专科以上学校,设立数学系或相应的数学专业,以及理工类、经济类等等都开设数学专业课程。初高中及以下阶段指数学科学的好不好,或数学课程如何,提问者以数学专业的提法,泛指高等教育阶段。
如果是在校学习阶段,通过考试成绩,体现好不好,如果是工作阶段,可以从事数学研究,或数学教学的成果,从侧面体现。如果非从事数学专业对口的工作,可从数学素养来判断。
数学素养属于认识论和方法论的综合性思维形式,它具有概念化、抽象化、模式化的认识特征。具有数学素养的人善于把数学中的概念结论和处理方法推广应用于认识一切客观事物,具有这样的哲学高度和认识特征。具体说,一个具有“数学素养”的人在他的认识世界和改造世界的活动中,常常表现出三个特点。
基本特点
1、 在讨论问题时,习惯于强调定义(界定概念),强调问题存在的条件;
2、 在观察问题时,习惯于抓住其中的(函数)关系,在微观(局部)认识基础上进一步做出多因素的全局性(全空间)考虑;
3、 在认识问题时,习惯于将已有的严格的数学概念如对偶、相关、随机、泛涵、非线性、周期性、混沌等等概念广义化,用于认识现实中的问题。比如可以看出价格是商品的对偶,效益是公司的泛涵等等。
职业习惯
更通俗地说,数学素养就是数学家的一种职业习惯,“三句话不离本行”,我们希望把我们的专业搞得更好,更精密更严格,有些这种优秀的职业习惯当然是好事。人的所有修养,有意识的修养比无意识地、仅凭自然增长地修养来得快得多。只要有这样强烈的要求、愿望和意识,坚持下去人人都可以形成较高的数学素养。
属于范畴
一位名家说:真正的数学家应能把他的东西讲给任何人听得懂。因为任何数学形式再复杂,总有它简单的思想实质,因而掌握这种数学思想总是容易的,这一点在大家学习数学时一定要明确。在现代科学中数学能力、数学思维十分重要,这种能力不是表现在死记硬背,不光表现在计算能力,在计算机时代特别表现在建模能力,建模能力的基础就是数学素养。思想比公式更重要,建模比计算更重要。学数学,用数学,对它始终有兴趣,是培养数学素养的好条件、好方法、好场所。希望同学们消除对数学的畏惧感,培养对数学的兴趣,增进学好数学的信心,了解更多的现代数学的概念和思想、提高数学悟性和数学意识、培养数学思维的习惯。
请注意,我们往往只注意到数学的思想方法中严格推理的一面,它属于“演绎”的范畴,其实,数学修养中也有对偶的一面――“归纳”,称之为“合情推理”或“常识推理”,它要求我们培养和运用灵活、猜想和活跃的思维习惯。
发挥作用
下面举一个例子,看看数学素养在其中如何发挥作用。18世纪德国哥德堡有一条河,河中有两个岛,两岸于两岛间架有七座桥。问题是:一个人怎样走才可以不重复的走遍七座桥而回到原地。
这个问题好像与数学关系不大,它是几何问题,但不是关于长度、角度的欧氏几何。很多人都失败了,欧拉以敏锐的数学家眼光,猜想这个问题可能无解(这是合情推理)。然后他以高度的抽象能力,把问题变成了一个“一笔画”问题,建模如下:见图右,能否从一个点出发不离开纸面地画出所有的连线,使笔仍回到原来出发的地方。
以下开始演绎分析,一笔画的要求使得图形有这样的特征:除起点与终点外,一笔画问题中线路的交岔点处,有一条线进就一定有一条线出,故在交岔点处汇合的曲线必为偶数条。七桥问题中,有四个交叉点处都交汇了奇数条曲线,故此问题不可解。欧拉还进一步证明了:一个连通的无向图,具有通过这个图中的每一条边一次且仅一次的路,当且仅当它的奇数次顶点的个数为0或为2。这是他为数学的一个新分枝――图论所作的奠基性工作,后人称此为欧拉定理。
现实问题
这个例子是使用数学思维解决了现实问题,另一个例子“正电子”的发现正好相反,是先有数学解,预言了现实问题。1928年英国物理学家狄拉克Dirac在研究量子力学时得到了一个描述电子运动的Dirac方程,由于开平方,得到了正负两个完全相反的解,也就是说,这个方程除了可以描述已知的带负电的电子的运动,还描述了除了电荷是正的以外,其他结构、性质与电子一样的反粒子的运动。1932年物理学家安德森(Anderson)在宇宙射线中得到了正电子,并于1936年获得诺贝尔物理学奖。我国物理学家赵忠尧1930年正在加州理工学院读研究生,他的试验结果一出来,安德森在他的办公室隔壁办公,他受启发,立刻意识到试验结果表明:一种尚未认知的物质出现了,进一步做工作获得成功,赵忠尧与诺贝尔奖擦肩而过。(后面部分回答系引用)
由于并未开始招生因此暂无具体收费标准。但该学校非公办学校且教育方式接轨国际,大胆预测收费标准不低。...
2022广东春节专科批院校分数线,考生类别为物理专科批的是160分,考生类别为历史专科批的也是160分。2021年广东省普通高校招生考试实行3+1+2模式,以历史等科目类以及物理等科目类来区分,广东选择物理考生在160分以上能上专科大学。...
一、第一梯队学校评价标准: 1. 独特的教学和教育理念; 2. 独树一帜的教育方法或深厚的办学积淀; 3. 足够高的社会美誉度,并受到市级乃至国家级的表彰; 4. 一流的软硬件; 5. 较好的对口初中等。 二、第二梯队学校评价标准: 1. 优异且稳定的升学成绩(或有推优); 2. 区内突出的教学特色; 3. 足够的师资力量; 4. 发展劲头明显或受到市、区...
IB有自己的评分系统,45为高分,拿到36至38左右即有资格申请剑桥(一般需要40 - 41),申请常春藤大学的学生一般分数在40或以上,牛津要求42+的成绩。而A - Level课程以A、B来打分,判分标准严谨不够,在多年来呼吁改革现行的A - LEVEL体制的压力下,英国政府正着手改革A - LEVEL提供,其改革的参照体系便是IB。...
说起来就让人害怕头疼的专业数学与应用数学!很多人一提到数学或是应用数学专业...
数学没有好的方法,除了掌握好课本上的基础知识点外,就是多做题,做不同类型的题,做的题多了,也就...
1、掌握数学思想方法是关键。2、勤练习多巩固。3、应用知识解决实际...
可以的。民事法律行为遵循自愿、公平、合法原则,且不能违背公序和良俗。法官完全可以按照民事法律基...
考研的话,需要先定下你想参考的学校,因为不是每个学校要考的专业课都是同一个参考书。找好所要参考...
外语类法律类大多不学高数...
一般本科院校非数学专业本科生在校会学习高等数学,概率统计,线性代数这三门课程。在大一上下学期会...
数学是基础学科,金融数学就有了就业方向了单纯从就业面来说金融数学就业面更广...
2016年全国首批开设数据科学与大数据技术专业的大学分别是:对外经济贸易大学、...
如何根据擅长的学科选大学专业?一份超完整的攻略来了,比如喜欢语文,可选专业有语言文学类专业,如中国语...
操作成功!
操作失败!
秋色宜人
2022-10-29数学专业学得好不好,一般指高等专科以上学校,设立数学系或相应的数学专业,以及理工类、经济类等等都开设数学专业课程。初高中及以下阶段指数学科学的好不好,或数学课程如何,提问者以数学专业的提法,泛指高等教育阶段。
如果是在校学习阶段,通过考试成绩,体现好不好,如果是工作阶段,可以从事数学研究,或数学教学的成果,从侧面体现。如果非从事数学专业对口的工作,可从数学素养来判断。
数学素养属于认识论和方法论的综合性思维形式,它具有概念化、抽象化、模式化的认识特征。具有数学素养的人善于把数学中的概念结论和处理方法推广应用于认识一切客观事物,具有这样的哲学高度和认识特征。具体说,一个具有“数学素养”的人在他的认识世界和改造世界的活动中,常常表现出三个特点。
基本特点
1、 在讨论问题时,习惯于强调定义(界定概念),强调问题存在的条件;
2、 在观察问题时,习惯于抓住其中的(函数)关系,在微观(局部)认识基础上进一步做出多因素的全局性(全空间)考虑;
3、 在认识问题时,习惯于将已有的严格的数学概念如对偶、相关、随机、泛涵、非线性、周期性、混沌等等概念广义化,用于认识现实中的问题。比如可以看出价格是商品的对偶,效益是公司的泛涵等等。
职业习惯
更通俗地说,数学素养就是数学家的一种职业习惯,“三句话不离本行”,我们希望把我们的专业搞得更好,更精密更严格,有些这种优秀的职业习惯当然是好事。人的所有修养,有意识的修养比无意识地、仅凭自然增长地修养来得快得多。只要有这样强烈的要求、愿望和意识,坚持下去人人都可以形成较高的数学素养。
属于范畴
一位名家说:真正的数学家应能把他的东西讲给任何人听得懂。因为任何数学形式再复杂,总有它简单的思想实质,因而掌握这种数学思想总是容易的,这一点在大家学习数学时一定要明确。在现代科学中数学能力、数学思维十分重要,这种能力不是表现在死记硬背,不光表现在计算能力,在计算机时代特别表现在建模能力,建模能力的基础就是数学素养。思想比公式更重要,建模比计算更重要。学数学,用数学,对它始终有兴趣,是培养数学素养的好条件、好方法、好场所。希望同学们消除对数学的畏惧感,培养对数学的兴趣,增进学好数学的信心,了解更多的现代数学的概念和思想、提高数学悟性和数学意识、培养数学思维的习惯。
请注意,我们往往只注意到数学的思想方法中严格推理的一面,它属于“演绎”的范畴,其实,数学修养中也有对偶的一面――“归纳”,称之为“合情推理”或“常识推理”,它要求我们培养和运用灵活、猜想和活跃的思维习惯。
发挥作用
下面举一个例子,看看数学素养在其中如何发挥作用。18世纪德国哥德堡有一条河,河中有两个岛,两岸于两岛间架有七座桥。问题是:一个人怎样走才可以不重复的走遍七座桥而回到原地。
这个问题好像与数学关系不大,它是几何问题,但不是关于长度、角度的欧氏几何。很多人都失败了,欧拉以敏锐的数学家眼光,猜想这个问题可能无解(这是合情推理)。然后他以高度的抽象能力,把问题变成了一个“一笔画”问题,建模如下:见图右,能否从一个点出发不离开纸面地画出所有的连线,使笔仍回到原来出发的地方。
以下开始演绎分析,一笔画的要求使得图形有这样的特征:除起点与终点外,一笔画问题中线路的交岔点处,有一条线进就一定有一条线出,故在交岔点处汇合的曲线必为偶数条。七桥问题中,有四个交叉点处都交汇了奇数条曲线,故此问题不可解。欧拉还进一步证明了:一个连通的无向图,具有通过这个图中的每一条边一次且仅一次的路,当且仅当它的奇数次顶点的个数为0或为2。这是他为数学的一个新分枝――图论所作的奠基性工作,后人称此为欧拉定理。
现实问题
这个例子是使用数学思维解决了现实问题,另一个例子“正电子”的发现正好相反,是先有数学解,预言了现实问题。1928年英国物理学家狄拉克Dirac在研究量子力学时得到了一个描述电子运动的Dirac方程,由于开平方,得到了正负两个完全相反的解,也就是说,这个方程除了可以描述已知的带负电的电子的运动,还描述了除了电荷是正的以外,其他结构、性质与电子一样的反粒子的运动。1932年物理学家安德森(Anderson)在宇宙射线中得到了正电子,并于1936年获得诺贝尔物理学奖。我国物理学家赵忠尧1930年正在加州理工学院读研究生,他的试验结果一出来,安德森在他的办公室隔壁办公,他受启发,立刻意识到试验结果表明:一种尚未认知的物质出现了,进一步做工作获得成功,赵忠尧与诺贝尔奖擦肩而过。(后面部分回答系引用)